3.2.11 \(\int \frac {(a+b \tan (e+f x))^2 (A+B \tan (e+f x)+C \tan ^2(e+f x))}{\sqrt {c+d \tan (e+f x)}} \, dx\) [111]

Optimal. Leaf size=287 \[ -\frac {(a-i b)^2 (B+i (A-C)) \tanh ^{-1}\left (\frac {\sqrt {c+d \tan (e+f x)}}{\sqrt {c-i d}}\right )}{\sqrt {c-i d} f}+\frac {(a+i b)^2 (i A-B-i C) \tanh ^{-1}\left (\frac {\sqrt {c+d \tan (e+f x)}}{\sqrt {c+i d}}\right )}{\sqrt {c+i d} f}+\frac {2 \left (12 a^2 C d^2-10 a b d (2 c C-3 B d)+b^2 \left (8 c^2 C-10 B c d+15 (A-C) d^2\right )\right ) \sqrt {c+d \tan (e+f x)}}{15 d^3 f}-\frac {2 b (4 b c C-5 b B d-4 a C d) \tan (e+f x) \sqrt {c+d \tan (e+f x)}}{15 d^2 f}+\frac {2 C (a+b \tan (e+f x))^2 \sqrt {c+d \tan (e+f x)}}{5 d f} \]

[Out]

-(a-I*b)^2*(B+I*(A-C))*arctanh((c+d*tan(f*x+e))^(1/2)/(c-I*d)^(1/2))/f/(c-I*d)^(1/2)+(a+I*b)^2*(I*A-B-I*C)*arc
tanh((c+d*tan(f*x+e))^(1/2)/(c+I*d)^(1/2))/f/(c+I*d)^(1/2)+2/15*(12*a^2*C*d^2-10*a*b*d*(-3*B*d+2*C*c)+b^2*(8*c
^2*C-10*B*c*d+15*(A-C)*d^2))*(c+d*tan(f*x+e))^(1/2)/d^3/f-2/15*b*(-5*B*b*d-4*C*a*d+4*C*b*c)*(c+d*tan(f*x+e))^(
1/2)*tan(f*x+e)/d^2/f+2/5*C*(c+d*tan(f*x+e))^(1/2)*(a+b*tan(f*x+e))^2/d/f

________________________________________________________________________________________

Rubi [A]
time = 0.65, antiderivative size = 287, normalized size of antiderivative = 1.00, number of steps used = 10, number of rules used = 7, integrand size = 47, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.149, Rules used = {3728, 3718, 3711, 3620, 3618, 65, 214} \begin {gather*} \frac {2 \sqrt {c+d \tan (e+f x)} \left (12 a^2 C d^2-10 a b d (2 c C-3 B d)+b^2 \left (15 d^2 (A-C)-10 B c d+8 c^2 C\right )\right )}{15 d^3 f}-\frac {(a-i b)^2 (B+i (A-C)) \tanh ^{-1}\left (\frac {\sqrt {c+d \tan (e+f x)}}{\sqrt {c-i d}}\right )}{f \sqrt {c-i d}}+\frac {(a+i b)^2 (i A-B-i C) \tanh ^{-1}\left (\frac {\sqrt {c+d \tan (e+f x)}}{\sqrt {c+i d}}\right )}{f \sqrt {c+i d}}-\frac {2 b \tan (e+f x) (-4 a C d-5 b B d+4 b c C) \sqrt {c+d \tan (e+f x)}}{15 d^2 f}+\frac {2 C (a+b \tan (e+f x))^2 \sqrt {c+d \tan (e+f x)}}{5 d f} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[((a + b*Tan[e + f*x])^2*(A + B*Tan[e + f*x] + C*Tan[e + f*x]^2))/Sqrt[c + d*Tan[e + f*x]],x]

[Out]

-(((a - I*b)^2*(B + I*(A - C))*ArcTanh[Sqrt[c + d*Tan[e + f*x]]/Sqrt[c - I*d]])/(Sqrt[c - I*d]*f)) + ((a + I*b
)^2*(I*A - B - I*C)*ArcTanh[Sqrt[c + d*Tan[e + f*x]]/Sqrt[c + I*d]])/(Sqrt[c + I*d]*f) + (2*(12*a^2*C*d^2 - 10
*a*b*d*(2*c*C - 3*B*d) + b^2*(8*c^2*C - 10*B*c*d + 15*(A - C)*d^2))*Sqrt[c + d*Tan[e + f*x]])/(15*d^3*f) - (2*
b*(4*b*c*C - 5*b*B*d - 4*a*C*d)*Tan[e + f*x]*Sqrt[c + d*Tan[e + f*x]])/(15*d^2*f) + (2*C*(a + b*Tan[e + f*x])^
2*Sqrt[c + d*Tan[e + f*x]])/(5*d*f)

Rule 65

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - a*(d/b) + d*(x^p/b))^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 214

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x/Rt[-a/b, 2]], x] /; FreeQ[{a, b},
x] && NegQ[a/b]

Rule 3618

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*tan[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[c*(
d/f), Subst[Int[(a + (b/d)*x)^m/(d^2 + c*x), x], x, d*Tan[e + f*x]], x] /; FreeQ[{a, b, c, d, e, f, m}, x] &&
NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && EqQ[c^2 + d^2, 0]

Rule 3620

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[(c
 + I*d)/2, Int[(a + b*Tan[e + f*x])^m*(1 - I*Tan[e + f*x]), x], x] + Dist[(c - I*d)/2, Int[(a + b*Tan[e + f*x]
)^m*(1 + I*Tan[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, m}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0]
&& NeQ[c^2 + d^2, 0] &&  !IntegerQ[m]

Rule 3711

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_.)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)] + (C_.)*tan[(e_.) + (
f_.)*(x_)]^2), x_Symbol] :> Simp[C*((a + b*Tan[e + f*x])^(m + 1)/(b*f*(m + 1))), x] + Int[(a + b*Tan[e + f*x])
^m*Simp[A - C + B*Tan[e + f*x], x], x] /; FreeQ[{a, b, e, f, A, B, C, m}, x] && NeQ[A*b^2 - a*b*B + a^2*C, 0]
&&  !LeQ[m, -1]

Rule 3718

Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_.)*((A_.) + (B_.)*tan[(e
_.) + (f_.)*(x_)] + (C_.)*tan[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[b*C*Tan[e + f*x]*((c + d*Tan[e + f*x])
^(n + 1)/(d*f*(n + 2))), x] - Dist[1/(d*(n + 2)), Int[(c + d*Tan[e + f*x])^n*Simp[b*c*C - a*A*d*(n + 2) - (A*b
 + a*B - b*C)*d*(n + 2)*Tan[e + f*x] - (a*C*d*(n + 2) - b*(c*C - B*d*(n + 2)))*Tan[e + f*x]^2, x], x], x] /; F
reeQ[{a, b, c, d, e, f, A, B, C, n}, x] && NeQ[b*c - a*d, 0] && NeQ[c^2 + d^2, 0] &&  !LtQ[n, -1]

Rule 3728

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_.)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_)*((A_.) + (B_.)*
tan[(e_.) + (f_.)*(x_)] + (C_.)*tan[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[C*(a + b*Tan[e + f*x])^m*((c + d
*Tan[e + f*x])^(n + 1)/(d*f*(m + n + 1))), x] + Dist[1/(d*(m + n + 1)), Int[(a + b*Tan[e + f*x])^(m - 1)*(c +
d*Tan[e + f*x])^n*Simp[a*A*d*(m + n + 1) - C*(b*c*m + a*d*(n + 1)) + d*(A*b + a*B - b*C)*(m + n + 1)*Tan[e + f
*x] - (C*m*(b*c - a*d) - b*B*d*(m + n + 1))*Tan[e + f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C, n}
, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0] && GtQ[m, 0] &&  !(IGtQ[n, 0] && ( !Intege
rQ[m] || (EqQ[c, 0] && NeQ[a, 0])))

Rubi steps

\begin {align*} \int \frac {(a+b \tan (e+f x))^2 \left (A+B \tan (e+f x)+C \tan ^2(e+f x)\right )}{\sqrt {c+d \tan (e+f x)}} \, dx &=\frac {2 C (a+b \tan (e+f x))^2 \sqrt {c+d \tan (e+f x)}}{5 d f}+\frac {2 \int \frac {(a+b \tan (e+f x)) \left (\frac {1}{2} (-4 b c C+a (5 A-C) d)+\frac {5}{2} (A b+a B-b C) d \tan (e+f x)-\frac {1}{2} (4 b c C-5 b B d-4 a C d) \tan ^2(e+f x)\right )}{\sqrt {c+d \tan (e+f x)}} \, dx}{5 d}\\ &=-\frac {2 b (4 b c C-5 b B d-4 a C d) \tan (e+f x) \sqrt {c+d \tan (e+f x)}}{15 d^2 f}+\frac {2 C (a+b \tan (e+f x))^2 \sqrt {c+d \tan (e+f x)}}{5 d f}-\frac {4 \int \frac {\frac {1}{4} \left (20 a b c C d-3 a^2 (5 A-C) d^2-4 b^2 \left (2 c^2 C-\frac {5 B c d}{2}\right )\right )-\frac {15}{4} \left (a^2 B-b^2 B+2 a b (A-C)\right ) d^2 \tan (e+f x)-\frac {1}{4} \left (12 a^2 C d^2-10 a b d (2 c C-3 B d)+b^2 \left (8 c^2 C-10 B c d+15 (A-C) d^2\right )\right ) \tan ^2(e+f x)}{\sqrt {c+d \tan (e+f x)}} \, dx}{15 d^2}\\ &=\frac {2 \left (12 a^2 C d^2-10 a b d (2 c C-3 B d)+b^2 \left (8 c^2 C-10 B c d+15 (A-C) d^2\right )\right ) \sqrt {c+d \tan (e+f x)}}{15 d^3 f}-\frac {2 b (4 b c C-5 b B d-4 a C d) \tan (e+f x) \sqrt {c+d \tan (e+f x)}}{15 d^2 f}+\frac {2 C (a+b \tan (e+f x))^2 \sqrt {c+d \tan (e+f x)}}{5 d f}-\frac {4 \int \frac {\frac {15}{4} \left (2 a b B-a^2 (A-C)+b^2 (A-C)\right ) d^2-\frac {15}{4} \left (a^2 B-b^2 B+2 a b (A-C)\right ) d^2 \tan (e+f x)}{\sqrt {c+d \tan (e+f x)}} \, dx}{15 d^2}\\ &=\frac {2 \left (12 a^2 C d^2-10 a b d (2 c C-3 B d)+b^2 \left (8 c^2 C-10 B c d+15 (A-C) d^2\right )\right ) \sqrt {c+d \tan (e+f x)}}{15 d^3 f}-\frac {2 b (4 b c C-5 b B d-4 a C d) \tan (e+f x) \sqrt {c+d \tan (e+f x)}}{15 d^2 f}+\frac {2 C (a+b \tan (e+f x))^2 \sqrt {c+d \tan (e+f x)}}{5 d f}+\frac {1}{2} \left ((a-i b)^2 (A-i B-C)\right ) \int \frac {1+i \tan (e+f x)}{\sqrt {c+d \tan (e+f x)}} \, dx+\frac {1}{2} \left ((a+i b)^2 (A+i B-C)\right ) \int \frac {1-i \tan (e+f x)}{\sqrt {c+d \tan (e+f x)}} \, dx\\ &=\frac {2 \left (12 a^2 C d^2-10 a b d (2 c C-3 B d)+b^2 \left (8 c^2 C-10 B c d+15 (A-C) d^2\right )\right ) \sqrt {c+d \tan (e+f x)}}{15 d^3 f}-\frac {2 b (4 b c C-5 b B d-4 a C d) \tan (e+f x) \sqrt {c+d \tan (e+f x)}}{15 d^2 f}+\frac {2 C (a+b \tan (e+f x))^2 \sqrt {c+d \tan (e+f x)}}{5 d f}-\frac {\left (i (a+i b)^2 (A+i B-C)\right ) \text {Subst}\left (\int \frac {1}{(-1+x) \sqrt {c+i d x}} \, dx,x,-i \tan (e+f x)\right )}{2 f}+\frac {\left ((a-i b)^2 (i A+B-i C)\right ) \text {Subst}\left (\int \frac {1}{(-1+x) \sqrt {c-i d x}} \, dx,x,i \tan (e+f x)\right )}{2 f}\\ &=\frac {2 \left (12 a^2 C d^2-10 a b d (2 c C-3 B d)+b^2 \left (8 c^2 C-10 B c d+15 (A-C) d^2\right )\right ) \sqrt {c+d \tan (e+f x)}}{15 d^3 f}-\frac {2 b (4 b c C-5 b B d-4 a C d) \tan (e+f x) \sqrt {c+d \tan (e+f x)}}{15 d^2 f}+\frac {2 C (a+b \tan (e+f x))^2 \sqrt {c+d \tan (e+f x)}}{5 d f}-\frac {\left ((a-i b)^2 (A-i B-C)\right ) \text {Subst}\left (\int \frac {1}{-1-\frac {i c}{d}+\frac {i x^2}{d}} \, dx,x,\sqrt {c+d \tan (e+f x)}\right )}{d f}-\frac {\left ((a+i b)^2 (A+i B-C)\right ) \text {Subst}\left (\int \frac {1}{-1+\frac {i c}{d}-\frac {i x^2}{d}} \, dx,x,\sqrt {c+d \tan (e+f x)}\right )}{d f}\\ &=-\frac {(a-i b)^2 (i A+B-i C) \tanh ^{-1}\left (\frac {\sqrt {c+d \tan (e+f x)}}{\sqrt {c-i d}}\right )}{\sqrt {c-i d} f}-\frac {(a+i b)^2 (B-i (A-C)) \tanh ^{-1}\left (\frac {\sqrt {c+d \tan (e+f x)}}{\sqrt {c+i d}}\right )}{\sqrt {c+i d} f}+\frac {2 \left (12 a^2 C d^2-10 a b d (2 c C-3 B d)+b^2 \left (8 c^2 C-10 B c d+15 (A-C) d^2\right )\right ) \sqrt {c+d \tan (e+f x)}}{15 d^3 f}-\frac {2 b (4 b c C-5 b B d-4 a C d) \tan (e+f x) \sqrt {c+d \tan (e+f x)}}{15 d^2 f}+\frac {2 C (a+b \tan (e+f x))^2 \sqrt {c+d \tan (e+f x)}}{5 d f}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 3.92, size = 275, normalized size = 0.96 \begin {gather*} \frac {-\frac {15 (a-i b)^2 (i A+B-i C) d \tanh ^{-1}\left (\frac {\sqrt {c+d \tan (e+f x)}}{\sqrt {c-i d}}\right )}{\sqrt {c-i d}}+\frac {15 i (a+i b)^2 (A+i B-C) d \tanh ^{-1}\left (\frac {\sqrt {c+d \tan (e+f x)}}{\sqrt {c+i d}}\right )}{\sqrt {c+i d}}+\frac {2 \left (12 a^2 C d^2+10 a b d (-2 c C+3 B d)+b^2 \left (8 c^2 C-10 B c d+15 (A-C) d^2\right )\right ) \sqrt {c+d \tan (e+f x)}}{d^2}+\frac {2 b (-4 b c C+5 b B d+4 a C d) \tan (e+f x) \sqrt {c+d \tan (e+f x)}}{d}+6 C (a+b \tan (e+f x))^2 \sqrt {c+d \tan (e+f x)}}{15 d f} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[((a + b*Tan[e + f*x])^2*(A + B*Tan[e + f*x] + C*Tan[e + f*x]^2))/Sqrt[c + d*Tan[e + f*x]],x]

[Out]

((-15*(a - I*b)^2*(I*A + B - I*C)*d*ArcTanh[Sqrt[c + d*Tan[e + f*x]]/Sqrt[c - I*d]])/Sqrt[c - I*d] + ((15*I)*(
a + I*b)^2*(A + I*B - C)*d*ArcTanh[Sqrt[c + d*Tan[e + f*x]]/Sqrt[c + I*d]])/Sqrt[c + I*d] + (2*(12*a^2*C*d^2 +
 10*a*b*d*(-2*c*C + 3*B*d) + b^2*(8*c^2*C - 10*B*c*d + 15*(A - C)*d^2))*Sqrt[c + d*Tan[e + f*x]])/d^2 + (2*b*(
-4*b*c*C + 5*b*B*d + 4*a*C*d)*Tan[e + f*x]*Sqrt[c + d*Tan[e + f*x]])/d + 6*C*(a + b*Tan[e + f*x])^2*Sqrt[c + d
*Tan[e + f*x]])/(15*d*f)

________________________________________________________________________________________

Maple [B] Leaf count of result is larger than twice the leaf count of optimal. \(5859\) vs. \(2(254)=508\).
time = 0.46, size = 5860, normalized size = 20.42

method result size
derivativedivides \(\text {Expression too large to display}\) \(5860\)
default \(\text {Expression too large to display}\) \(5860\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+b*tan(f*x+e))^2*(A+B*tan(f*x+e)+C*tan(f*x+e)^2)/(c+d*tan(f*x+e))^(1/2),x,method=_RETURNVERBOSE)

[Out]

result too large to display

________________________________________________________________________________________

Maxima [F(-1)] Timed out
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*tan(f*x+e))^2*(A+B*tan(f*x+e)+C*tan(f*x+e)^2)/(c+d*tan(f*x+e))^(1/2),x, algorithm="maxima")

[Out]

Timed out

________________________________________________________________________________________

Fricas [F(-1)] Timed out
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*tan(f*x+e))^2*(A+B*tan(f*x+e)+C*tan(f*x+e)^2)/(c+d*tan(f*x+e))^(1/2),x, algorithm="fricas")

[Out]

Timed out

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {\left (a + b \tan {\left (e + f x \right )}\right )^{2} \left (A + B \tan {\left (e + f x \right )} + C \tan ^{2}{\left (e + f x \right )}\right )}{\sqrt {c + d \tan {\left (e + f x \right )}}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*tan(f*x+e))**2*(A+B*tan(f*x+e)+C*tan(f*x+e)**2)/(c+d*tan(f*x+e))**(1/2),x)

[Out]

Integral((a + b*tan(e + f*x))**2*(A + B*tan(e + f*x) + C*tan(e + f*x)**2)/sqrt(c + d*tan(e + f*x)), x)

________________________________________________________________________________________

Giac [F(-2)]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: TypeError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*tan(f*x+e))^2*(A+B*tan(f*x+e)+C*tan(f*x+e)^2)/(c+d*tan(f*x+e))^(1/2),x, algorithm="giac")

[Out]

Exception raised: TypeError >> An error occurred running a Giac command:INPUT:sage2:=int(sage0,sageVARx):;OUTP
UT:Warning, need to choose a branch for the root of a polynomial with parameters. This might be wrong.The choi
ce was done

________________________________________________________________________________________

Mupad [B]
time = 47.98, size = 2500, normalized size = 8.71 \begin {gather*} \text {Too large to display} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((a + b*tan(e + f*x))^2*(A + B*tan(e + f*x) + C*tan(e + f*x)^2))/(c + d*tan(e + f*x))^(1/2),x)

[Out]

atan(((((16*(2*C*b^2*d^3*f^2 - 2*C*a^2*d^3*f^2 + 4*C*a*b*c*d^2*f^2))/f^3 - 64*c*d^2*(c + d*tan(e + f*x))^(1/2)
*((((8*C^2*a^4*c*f^2 + 8*C^2*b^4*c*f^2 - 32*C^2*a*b^3*d*f^2 + 32*C^2*a^3*b*d*f^2 - 48*C^2*a^2*b^2*c*f^2)^2/4 -
 (16*c^2*f^4 + 16*d^2*f^4)*(C^4*a^8 + C^4*b^8 + 4*C^4*a^2*b^6 + 6*C^4*a^4*b^4 + 4*C^4*a^6*b^2))^(1/2) - 4*C^2*
a^4*c*f^2 - 4*C^2*b^4*c*f^2 + 16*C^2*a*b^3*d*f^2 - 16*C^2*a^3*b*d*f^2 + 24*C^2*a^2*b^2*c*f^2)/(16*(c^2*f^4 + d
^2*f^4)))^(1/2))*((((8*C^2*a^4*c*f^2 + 8*C^2*b^4*c*f^2 - 32*C^2*a*b^3*d*f^2 + 32*C^2*a^3*b*d*f^2 - 48*C^2*a^2*
b^2*c*f^2)^2/4 - (16*c^2*f^4 + 16*d^2*f^4)*(C^4*a^8 + C^4*b^8 + 4*C^4*a^2*b^6 + 6*C^4*a^4*b^4 + 4*C^4*a^6*b^2)
)^(1/2) - 4*C^2*a^4*c*f^2 - 4*C^2*b^4*c*f^2 + 16*C^2*a*b^3*d*f^2 - 16*C^2*a^3*b*d*f^2 + 24*C^2*a^2*b^2*c*f^2)/
(16*(c^2*f^4 + d^2*f^4)))^(1/2) - (16*(c + d*tan(e + f*x))^(1/2)*(C^2*a^4*d^2 + C^2*b^4*d^2 - 6*C^2*a^2*b^2*d^
2))/f^2)*((((8*C^2*a^4*c*f^2 + 8*C^2*b^4*c*f^2 - 32*C^2*a*b^3*d*f^2 + 32*C^2*a^3*b*d*f^2 - 48*C^2*a^2*b^2*c*f^
2)^2/4 - (16*c^2*f^4 + 16*d^2*f^4)*(C^4*a^8 + C^4*b^8 + 4*C^4*a^2*b^6 + 6*C^4*a^4*b^4 + 4*C^4*a^6*b^2))^(1/2)
- 4*C^2*a^4*c*f^2 - 4*C^2*b^4*c*f^2 + 16*C^2*a*b^3*d*f^2 - 16*C^2*a^3*b*d*f^2 + 24*C^2*a^2*b^2*c*f^2)/(16*(c^2
*f^4 + d^2*f^4)))^(1/2)*1i - (((16*(2*C*b^2*d^3*f^2 - 2*C*a^2*d^3*f^2 + 4*C*a*b*c*d^2*f^2))/f^3 + 64*c*d^2*(c
+ d*tan(e + f*x))^(1/2)*((((8*C^2*a^4*c*f^2 + 8*C^2*b^4*c*f^2 - 32*C^2*a*b^3*d*f^2 + 32*C^2*a^3*b*d*f^2 - 48*C
^2*a^2*b^2*c*f^2)^2/4 - (16*c^2*f^4 + 16*d^2*f^4)*(C^4*a^8 + C^4*b^8 + 4*C^4*a^2*b^6 + 6*C^4*a^4*b^4 + 4*C^4*a
^6*b^2))^(1/2) - 4*C^2*a^4*c*f^2 - 4*C^2*b^4*c*f^2 + 16*C^2*a*b^3*d*f^2 - 16*C^2*a^3*b*d*f^2 + 24*C^2*a^2*b^2*
c*f^2)/(16*(c^2*f^4 + d^2*f^4)))^(1/2))*((((8*C^2*a^4*c*f^2 + 8*C^2*b^4*c*f^2 - 32*C^2*a*b^3*d*f^2 + 32*C^2*a^
3*b*d*f^2 - 48*C^2*a^2*b^2*c*f^2)^2/4 - (16*c^2*f^4 + 16*d^2*f^4)*(C^4*a^8 + C^4*b^8 + 4*C^4*a^2*b^6 + 6*C^4*a
^4*b^4 + 4*C^4*a^6*b^2))^(1/2) - 4*C^2*a^4*c*f^2 - 4*C^2*b^4*c*f^2 + 16*C^2*a*b^3*d*f^2 - 16*C^2*a^3*b*d*f^2 +
 24*C^2*a^2*b^2*c*f^2)/(16*(c^2*f^4 + d^2*f^4)))^(1/2) + (16*(c + d*tan(e + f*x))^(1/2)*(C^2*a^4*d^2 + C^2*b^4
*d^2 - 6*C^2*a^2*b^2*d^2))/f^2)*((((8*C^2*a^4*c*f^2 + 8*C^2*b^4*c*f^2 - 32*C^2*a*b^3*d*f^2 + 32*C^2*a^3*b*d*f^
2 - 48*C^2*a^2*b^2*c*f^2)^2/4 - (16*c^2*f^4 + 16*d^2*f^4)*(C^4*a^8 + C^4*b^8 + 4*C^4*a^2*b^6 + 6*C^4*a^4*b^4 +
 4*C^4*a^6*b^2))^(1/2) - 4*C^2*a^4*c*f^2 - 4*C^2*b^4*c*f^2 + 16*C^2*a*b^3*d*f^2 - 16*C^2*a^3*b*d*f^2 + 24*C^2*
a^2*b^2*c*f^2)/(16*(c^2*f^4 + d^2*f^4)))^(1/2)*1i)/((((16*(2*C*b^2*d^3*f^2 - 2*C*a^2*d^3*f^2 + 4*C*a*b*c*d^2*f
^2))/f^3 - 64*c*d^2*(c + d*tan(e + f*x))^(1/2)*((((8*C^2*a^4*c*f^2 + 8*C^2*b^4*c*f^2 - 32*C^2*a*b^3*d*f^2 + 32
*C^2*a^3*b*d*f^2 - 48*C^2*a^2*b^2*c*f^2)^2/4 - (16*c^2*f^4 + 16*d^2*f^4)*(C^4*a^8 + C^4*b^8 + 4*C^4*a^2*b^6 +
6*C^4*a^4*b^4 + 4*C^4*a^6*b^2))^(1/2) - 4*C^2*a^4*c*f^2 - 4*C^2*b^4*c*f^2 + 16*C^2*a*b^3*d*f^2 - 16*C^2*a^3*b*
d*f^2 + 24*C^2*a^2*b^2*c*f^2)/(16*(c^2*f^4 + d^2*f^4)))^(1/2))*((((8*C^2*a^4*c*f^2 + 8*C^2*b^4*c*f^2 - 32*C^2*
a*b^3*d*f^2 + 32*C^2*a^3*b*d*f^2 - 48*C^2*a^2*b^2*c*f^2)^2/4 - (16*c^2*f^4 + 16*d^2*f^4)*(C^4*a^8 + C^4*b^8 +
4*C^4*a^2*b^6 + 6*C^4*a^4*b^4 + 4*C^4*a^6*b^2))^(1/2) - 4*C^2*a^4*c*f^2 - 4*C^2*b^4*c*f^2 + 16*C^2*a*b^3*d*f^2
 - 16*C^2*a^3*b*d*f^2 + 24*C^2*a^2*b^2*c*f^2)/(16*(c^2*f^4 + d^2*f^4)))^(1/2) - (16*(c + d*tan(e + f*x))^(1/2)
*(C^2*a^4*d^2 + C^2*b^4*d^2 - 6*C^2*a^2*b^2*d^2))/f^2)*((((8*C^2*a^4*c*f^2 + 8*C^2*b^4*c*f^2 - 32*C^2*a*b^3*d*
f^2 + 32*C^2*a^3*b*d*f^2 - 48*C^2*a^2*b^2*c*f^2)^2/4 - (16*c^2*f^4 + 16*d^2*f^4)*(C^4*a^8 + C^4*b^8 + 4*C^4*a^
2*b^6 + 6*C^4*a^4*b^4 + 4*C^4*a^6*b^2))^(1/2) - 4*C^2*a^4*c*f^2 - 4*C^2*b^4*c*f^2 + 16*C^2*a*b^3*d*f^2 - 16*C^
2*a^3*b*d*f^2 + 24*C^2*a^2*b^2*c*f^2)/(16*(c^2*f^4 + d^2*f^4)))^(1/2) + (((16*(2*C*b^2*d^3*f^2 - 2*C*a^2*d^3*f
^2 + 4*C*a*b*c*d^2*f^2))/f^3 + 64*c*d^2*(c + d*tan(e + f*x))^(1/2)*((((8*C^2*a^4*c*f^2 + 8*C^2*b^4*c*f^2 - 32*
C^2*a*b^3*d*f^2 + 32*C^2*a^3*b*d*f^2 - 48*C^2*a^2*b^2*c*f^2)^2/4 - (16*c^2*f^4 + 16*d^2*f^4)*(C^4*a^8 + C^4*b^
8 + 4*C^4*a^2*b^6 + 6*C^4*a^4*b^4 + 4*C^4*a^6*b^2))^(1/2) - 4*C^2*a^4*c*f^2 - 4*C^2*b^4*c*f^2 + 16*C^2*a*b^3*d
*f^2 - 16*C^2*a^3*b*d*f^2 + 24*C^2*a^2*b^2*c*f^2)/(16*(c^2*f^4 + d^2*f^4)))^(1/2))*((((8*C^2*a^4*c*f^2 + 8*C^2
*b^4*c*f^2 - 32*C^2*a*b^3*d*f^2 + 32*C^2*a^3*b*d*f^2 - 48*C^2*a^2*b^2*c*f^2)^2/4 - (16*c^2*f^4 + 16*d^2*f^4)*(
C^4*a^8 + C^4*b^8 + 4*C^4*a^2*b^6 + 6*C^4*a^4*b^4 + 4*C^4*a^6*b^2))^(1/2) - 4*C^2*a^4*c*f^2 - 4*C^2*b^4*c*f^2
+ 16*C^2*a*b^3*d*f^2 - 16*C^2*a^3*b*d*f^2 + 24*C^2*a^2*b^2*c*f^2)/(16*(c^2*f^4 + d^2*f^4)))^(1/2) + (16*(c + d
*tan(e + f*x))^(1/2)*(C^2*a^4*d^2 + C^2*b^4*d^2 - 6*C^2*a^2*b^2*d^2))/f^2)*((((8*C^2*a^4*c*f^2 + 8*C^2*b^4*c*f
^2 - 32*C^2*a*b^3*d*f^2 + 32*C^2*a^3*b*d*f^2 - 48*C^2*a^2*b^2*c*f^2)^2/4 - (16*c^2*f^4 + 16*d^2*f^4)*(C^4*a^8
+ C^4*b^8 + 4*C^4*a^2*b^6 + 6*C^4*a^4*b^4 + 4*C^4*a^6*b^2))^(1/2) - 4*C^2*a^4*c*f^2 - 4*C^2*b^4*c*f^2 + 16*C^2
*a*b^3*d*f^2 - 16*C^2*a^3*b*d*f^2 + 24*C^2*a^2*b^2*c*f^2)/(16*(c^2*f^4 + d^2*f^4)))^(1/2) - (32*(2*C^3*a^3*b^3
*d^2 + C^3*a*b^5*d^2 + C^3*a^5*b*d^2))/f^3))*((...

________________________________________________________________________________________